ACS Review - Structure and Properties

- What is the ground state electron configuration of carbon? 1.
 - $1s^{2}2s^{2}2p_{x}^{1}$ A. $1s^22s^22p_x$ B. $1s^2 2s^2 2p_x^{-1} 2p_y^{-1}$ C. $1s^{2}2s^{2}2p_{x}^{2}2p_{y}$ D.
- 2. Which of the following has(have) the same electron configuration as Ne?

 Mg^{2+} O^{2-} Na Mg^+

- Na⁻ and O²⁻ A.
- Mg^{2+} and O^{2-} Mg^+ and O^{2-} B.
- C.
- only Mg^{2+} D.
- What is the letter designation given to dumbbell shaped orbitals like the one depicted below? 3.

- A. S B. р C. d
- f D.

Which one of the following does not have an octet of electrons surrounding the central atom? 4.

- BH₃ A.
- B. CH_4
- C. NH₃
- D. H_2O
- Predict which bond is the most polar in ethanol, CH₃CH₂OH? 5.
 - A. C-C
 - Β. C-H
 - C. C-0
 - O-H D.
- Which one of the following has a triple bond? 6.
 - A. O_2
 - Β. Cl_2
 - C. CN⁻
 - D. OH-

Which one of the following is the ionic compound formed between magnesium and chlorine? 7.

- A. MgCl
- Β. MgCl₂
- C. Mg₂Cl₃
- D. MgCl₃
- Identify the condensed formula of the following structure: 8.

- A. $(CH_3)_2CHCHClCH(CH_3)_2$
- B. CH₃CH(CH₃)CHClCH(CH₃)₂
- C. $(CH_3)_2CHCHClC(CH_3)_3$
- $D. \qquad (CH_3)_3 CCHClCH(CH_3)_2$
- 9. What is the chemical formula of the following carbon skeleton diagram?

- A. C_8H_{14}
- $B. \qquad C_8 H_{16}$
- C. C₈H₁₈
- D. C_8H_{20}

10. What is the chemical formula of the following carbon skeleton diagram?

- A. C_5H_9Cl
- $B. C_5H_{11}Cl$
- $C. \qquad C_6H_9Cl$
- $D. \qquad C_6H_{11}Cl$
- 11. How many C_3H_8O constitutional isomers are possible?
 - A. one
 - B. two
 - C. three
 - D. four
- 12. Which of the following best describes the relationship between the following two structures?

- A. identical compounds
- B. resonance structures
- C. constitutional isomers

- D. different compounds with different constitutions
- 13. How many constitutional isomers of C_4H_9Br are possible?
 - A. one
 - B. two
 - C. three
 - D. four

14. How many constitutional isomers of $C_3H_6Cl_2$ are possible?

- A. three
- B. four
- C. five
- D. six
- 15. What is the formal charge on the carbon atom?

H H-C: H A. B.

C. -1

+1

0

D. -2

16. Which of the following describes the relationship between the following two structures?

- A. identical structures
- B. resonance forms
- C. constitutional isomers
- D. different compounds with different compositions

17. Which of the following describes the relationship between the following two structures?

 $H_3C - \overset{+}{N} \equiv N$: and $H_3C - \overset{+}{N} = \overset{+}{N}$:

- A. identical structures
- B. resonance forms
- C. constitutional isomers
- D. different compounds with different compositions
- 18. What is the formal charge on the oxygen atom in the structure below?

 $H-\overset{"}{\overset{}_{H}O}-CH_3$

- A. -1 B. 0 C. +1 D. +2
- 19. What is the formal charge on the nitrogen atom in the structure below?
 - $\begin{array}{cccc}
 H & H \\
 N = C \\
 H & H \\
 \end{array}$ A. -1 B. 0 C. +1 D. +2
- 20. The formal charges on the nitrogen and oxygen in the following structures are, respectively:
 - $H_3C C \equiv N \ddot{O}$:
 - A. +1, -1 B. 0, -1 C. +1, 0
 - D. 0, 0
- 21. Identify the compound below which has a partial positive charge on the chlorine atom.

22. Based on the VSEPR model, which of the following species has (have) a trigonal planar geometry?

I. BCl₃ II. NH₃ III. NO₃⁻

A. only IB. I and IIC. I and IIID. I, II, and III

23. Based on VSEPR theory, which of the following species has (have) a trigonal pyramidal geometry?

I. CO_3^{2-} II. NH_3 III. CH_3^+

A. only IB. only II

C. I and II

- D. II and III
- 24. Which of the following species has(have) a linear geometry?

I. CO_2 II. NO_2^+ III. NO_2^-

- A. only I
- B. only II
- C. I and II
- D. I, II, and III
- 25. Which of the following molecules would you expect to have a dipole moment?
 - I. CO₂ II. HCN III. CHCl₃
 - A. II and III
 - B. only II
 - C. only III
 - D. I, II, and III
- 26. Which of the following molecules would you expect to have a dipole moment?
 - I. CH₂Cl₂ II. CH₃Cl III. CCl₄
 - A. only I
 - B. only II
 - C. I and II
 - D. I, II, and III
- 27. The H-C-H bond angles in ethylene, C_2H_4 , are closest to:
 - A. 90°
 - B. 109.5°
 - C. 120°
 - D. 180°
- 28. The C-C-C bond angle in propane, C_3H_8 , is closest to:
 - A. 90°
 - B. 109.5°
 - C. 120°
 - D. 180°
- 29. The C-C-C bond angle in propyne, shown below, is:

Н₃С−С≡СН

- A. 90°
- B. 109.5°
- C. 120°
- D. 180°
- 30. The hybridization of carbon atoms 1, 2, and 3 in the following are, respectively:

H₂C=CH-CH₃

1 2 3

- $\begin{array}{ll} A. & sp, sp, and <math>sp^2 \\ B. & sp, sp, and <math>sp^3 \\ C. & sp^2, sp^2, and sp^3 \\ D. & sp^2, sp^3, and sp^3 \end{array}$
- 31. How many *pi* bonds are present in the following structure?

 $H_2C=CH-C\equiv N$

- A.oneB.two
- C. three
- D. four
- 32. The carbon-carbon single bond in the following is formed by the overlap of which two orbitals?

 $H_2C=CH-C\equiv N$

- A. sp-spB. sp^2-sp C. sp^2-sp^2 D. sp^2-sp^3
- 33. What are the formal charges of boron and nitrogen, respectively, in the following structure?

$$F H H H H H H$$

- A. -1 and +1 B. -1 and 0
- C. 0 and +1
- D. 0 and 0
- 34. Which one of the following is isoelectronic with CO_2 ?
 - A. NO_2^-
 - B. NO_2^+
 - C. NO₂
 - D. O₃

35. In which of the following does hydrogen have a partial negative charge based on electronegativity?

- A. BH_3
- B. CH₄
- C. NH₃

D. H₂O

36. Which of the following species have a zero formal charge on its carbon atom?

37. Which one of the following species is formed when diazomethane loses a nitrogen molecule?

$$\stackrel{H}{\overset{-}{\overset{-}{\overset{-}}}}_{H} \stackrel{+}{\equiv} N: \longrightarrow ? + N_2$$

diazomethane

$$\begin{array}{c} H \\ H \\ H \\ H \\ \end{array}$$

- B. BC. CD. D
- 38. Which species is formed when the $CH_3N_2^+$ cation loses a nitrogen molecule?

A) H₃C ⊕

B) H₂C :

C) H₃C ·

D) H₃C $\stackrel{\ominus}{:}$

- A. A B. B C. C D. D
- 39. Give the molecular formula of the compound shown below:

- A. C₈H₁₆O
- $B. \qquad C_9H_{18}O$
- C. $C_{10}H_{18}O$
- D. $C_{10}H_{20}O$
- 40. The electron pair movement depicted below produces a second resonance form for the species. What is the formal charge on the nitrogen atom for this second resonance form?

- 41. Which statement correctly describes the structures of BH₃ and NH₃?
 - A. Both are trigonal and planar.
 - B. Both are pyramidal.
 - C. BH₃ is trigonal planar and NH₃ is trigonal pyramidal.

- D. BH₃ is trigonal pyramidal and NH₃ is trigonal planar.
- 42. Which one of the following is the conjugate acid of ethanol?
 - A. $CH_3CH_2O^-$
 - B. $CH_3CH_2O^+$
 - C. $CH_3CH_2OH_2^+$
 - D. $CH_3CH_2OH_3^+$
- 43. In the equilibrium below, the strongest base is: $(pK_a H_2O = 15.7, pK_a NH_3 = 36)$

 $H_2O + NH_2 \longrightarrow OH + NH_3$

A) H₂O

- B) NH_2^{Θ}
- C) OH^{Θ}
- D) NH₃
 - A. A B. B C. C D. D
- 44. In the equilibrium below, the strongest acid is:

 $CH_{3}CH_{2}OH + H_{2}SO_{4} \longrightarrow CH_{3}CH_{2}OH_{2}^{+} + HSO_{4}^{-}$ $A) H_{2}SO_{4}$ $B) CH_{3}CH_{2}OH$ $C) HSO_{4}^{\Theta}$ $D) CH_{3}CH_{2}^{\Theta}H_{2}$ A. A B. B C. C D. D

45. Which one of the following is the strongest base?

A) H ₃ C $\stackrel{\ominus}{:}$	
B) $\operatorname{NH}_2^{\Theta}$	
с) о н [⊖]	
D) F^{Θ}	
A.	A
В.	В
C.	С

D. D

46. Which one of the following mechanistically depicts the protonation of methanol by hydrogen bromide?

47. Which one of the following is the strongest acid?

A. FCH₂CO₂H

- B. ClCH₂CO₂H
- C. BrCH₂CO₂H
- D. ICH₂CO₂H
- 48. Which one of the following has the largest acid equilibrium constant, Ka?
 - A. CH₃CO₂H
 - B. CH₂ClCO₂H
 - C. CHCl₂CO₂H

D. CCl₃CO₂H

49. For which of the following does the equilibrium favor reactants.

A) CH₃CH₂OH + NaNH₂ \implies CH₃CH₂ONa + NH₃ B) CH₃CO₂H + NaOH \implies CH₃CO₂Na + H₂O C) HC≡CH NaOH ==== $HC \equiv CNa + H_2O$ +NaNH₂ HC = CNa + D) HC≡CH + NH₃ A. А Β. В С C. D. D 50. Identify the resonance structure which results from the following "electron pair movements".

51. A Lewis structure of the azide ion, N_3^- , is shown below. The formal charge on the middle nitrogen atom is:

- A. +2 B. +1 C. 0 D. -1
- 52. Identify the species which results from the following movement of electron pairs.

Structure and Properties KEY

1. C			
2. в			
3. в			
4. A			
5. d			
6. C			
7. в			
8. C			
9. c			
10. d			
11. c			
12. A			
13. D			
14. в			
15. C			
16. a			
10. л 17 в			
18 C			
10. C			
20 A			
20. A 21 A			
21. R 22 C			
22. С 23 в			
23. B 24. C			
2 4 . C			
25. A 26. C			
20. C 27. C			
27. С 28 р			
20. B 20. D			
2). D 30. c			
30. C			
31. С 32 р			
32. D			
33. А 34 р			
3 4 . B 35 ∧			
36 р			
30. B			
38 A			
30. д 30. д			
<i>1</i> 0 в			
40. b 41 c			
41. C			
42. С ЛЗ в			
43. Б ЛЛ л			
44. A			
+J. А Лб ∧			
40. A 17 ▲			
47. A			
40. D			
49. C			

50. а 51. в 52. а